whylogs.api
#
Subpackages#
Submodules#
Package Contents#
Classes#
A holder object for profiling results. |
Functions#
|
|
|
|
|
Function to track metrics based on validation data. |
|
Function to track regression metrics based on validation data. |
|
|
|
- whylogs.api.profiling(*, schema: Optional[whylogs.core.DatasetSchema] = None)#
- Parameters
schema (Optional[whylogs.core.DatasetSchema]) –
- class whylogs.api.ResultSet#
Bases:
abc.ABC
A holder object for profiling results.
A whylogs.log call can result in more than one profile. This wrapper class simplifies the navigation among these profiles.
Note that currently we only hold one profile but we’re planning to add other kinds of profiles such as segmented profiles here.
- property performance_metrics: Optional[whylogs.core.model_performance_metrics.ModelPerformanceMetrics]#
- Return type
Optional[whylogs.core.model_performance_metrics.ModelPerformanceMetrics]
- abstract view() Optional[whylogs.core.DatasetProfileView] #
- Return type
Optional[whylogs.core.DatasetProfileView]
- abstract profile() Optional[whylogs.core.DatasetProfile] #
- Return type
Optional[whylogs.core.DatasetProfile]
- get_writables() Optional[List[whylogs.api.writer.writer.Writable]] #
- Return type
Optional[List[whylogs.api.writer.writer.Writable]]
- set_dataset_timestamp(dataset_timestamp: datetime.datetime) None #
- Parameters
dataset_timestamp (datetime.datetime) –
- Return type
- add_model_performance_metrics(metrics: whylogs.core.model_performance_metrics.ModelPerformanceMetrics) None #
- Parameters
metrics (whylogs.core.model_performance_metrics.ModelPerformanceMetrics) –
- Return type
- add_metric(name: str, metric: whylogs.core.metrics.metrics.Metric) None #
- Parameters
name (str) –
metric (whylogs.core.metrics.metrics.Metric) –
- Return type
- whylogs.api.log(obj: Any = None, *, pandas: Optional[whylogs.core.stubs.pd.DataFrame] = None, row: Optional[Dict[str, Any]] = None, schema: Optional[whylogs.core.DatasetSchema] = None, name: Optional[str] = None, multiple: Optional[Dict[str, Loggable]] = None, dataset_timestamp: Optional[datetime.datetime] = None, trace_id: Optional[str] = None, tags: Optional[List[str]] = None, segment_key_values: Optional[List[Dict[str, str]]] = None) result_set.ResultSet #
- Parameters
obj (Any) –
pandas (Optional[whylogs.core.stubs.pd.DataFrame]) –
row (Optional[Dict[str, Any]]) –
schema (Optional[whylogs.core.DatasetSchema]) –
name (Optional[str]) –
multiple (Optional[Dict[str, Loggable]]) –
dataset_timestamp (Optional[datetime.datetime]) –
trace_id (Optional[str]) –
tags (Optional[List[str]]) –
- Return type
- whylogs.api.log_classification_metrics(data: whylogs.core.stubs.pd.DataFrame, target_column: str, prediction_column: str, score_column: Optional[str] = None, schema: Optional[whylogs.core.DatasetSchema] = None, log_full_data: bool = False, dataset_timestamp: Optional[datetime.datetime] = None) result_set.ResultSet #
Function to track metrics based on validation data. user may also pass the associated attribute names associated with target, prediction, and/or score. :param targets: actual validated values :type targets: List[Union[str, bool, float, int]] :param predictions: inferred/predicted values :type predictions: List[Union[str, bool, float, int]] :param scores: assocaited scores for each inferred, all values set to 1 if not
passed
- Parameters
data (whylogs.core.stubs.pd.DataFrame) –
target_column (str) –
prediction_column (str) –
score_column (Optional[str]) –
schema (Optional[whylogs.core.DatasetSchema]) –
log_full_data (bool) –
dataset_timestamp (Optional[datetime.datetime]) –
- Return type
- whylogs.api.log_regression_metrics(data: whylogs.core.stubs.pd.DataFrame, target_column: str, prediction_column: str, schema: Optional[whylogs.core.DatasetSchema] = None, log_full_data: bool = False, dataset_timestamp: Optional[datetime.datetime] = None) result_set.ResultSet #
Function to track regression metrics based on validation data. user may also pass the associated attribute names associated with target, prediction, and/or score. :param targets: actual validated values :type targets: List[Union[str, bool, float, int]] :param predictions: inferred/predicted values :type predictions: List[Union[str, bool, float, int]] :param scores: assocaited scores for each inferred, all values set to 1 if not
passed
- Parameters
data (whylogs.core.stubs.pd.DataFrame) –
target_column (str) –
prediction_column (str) –
schema (Optional[whylogs.core.DatasetSchema]) –
log_full_data (bool) –
dataset_timestamp (Optional[datetime.datetime]) –
- Return type
- whylogs.api.write(profile: whylogs.core.DatasetProfile, base_dir: str) None #
- Parameters
profile (whylogs.core.DatasetProfile) –
base_dir (str) –
- Return type